Template-Type: ReDIF-Paper 1.0 Author-Name: Alberto Bernardi Author-X-Name-First: Alberto Author-X-Name-Last: Bernardi Author-Name: Daniela Bragoli Author-X-Name-First: Daniela Author-X-Name-Last: Bragoli Author-Email: daniela.bragoli@unicatt.it Author-Workplace-Name: Università Cattolica del Sacro Cuore Author-Workplace-Name: Dipartimento di Matematica per le Scienze economiche, finanziarie ed attuariali, Università Cattolica del Sacro Cuore Author-Name: Davide Fedreghini Author-X-Name-First: Davide Author-X-Name-Last: Fedreghini Author-Name: Tommaso Ganugi Author-X-Name-First: Tommaso Author-X-Name-Last: Ganugi Author-Name: Giovanni Marseguerra Author-X-Name-First: Giovanni Author-X-Name-Last: Marseguerra Author-Email: giovanni.marseguerra@unicatt.it Author-Workplace-Name: Università Cattolica del Sacro Cuore Author-Workplace-Name: Dipartimento di Matematica per le Scienze economiche, finanziarie ed attuariali, Università Cattolica del Sacro Cuore Title: COVID-19 and firms' financial health in Brescia: A simulation with Machine Learning. Abstract: COVID-19 has generated an unprecedented shock to the global economy causing both the decrease in demand and supply. The purpose of this paper is to simulate the effect of COVID-19 on firms’ financial statements in Brescia. The shocked information is then fed into two machine learning bankruptcy models with the aim of providing an up-to-date picture of firms’ economic health in one of the most prosperous industrial areas in Italy and Europe. Length: 35 Creation-Date: 2021-01 File-URL: https://dipartimenti.unicatt.it/dime-dime21_01.pdf File-Format: Application/pdf File-Function: First version, 2021 Number: dime21_01 Classification-JEL: G33, C45, C52, R11, L23. Keywords: COVID-19, financial statements, machine learning, Brescia. Handle: RePEc:ctc:sdimse:dime21_01