Template-Type: ReDIF-Paper 1.0 Author-Name: Daniela Bragoli Author-X-Name-First: Daniela Author-X-Name-Last: Bragoli Author-Email: daniela.bragoli@unicatt.it Author-Workplace-Name: Università Cattolica del Sacro Cuore Author-Workplace-Name: Dipartimento di Matematica per le Scienze economiche, finanziarie ed attuariali, Università Cattolica del Sacro Cuore Author-Name: Camilla Ferretti Author-X-Name-First: Camilla Author-X-Name-Last: Ferretti Author-Name: Piero Ganugi Author-X-Name-First: Piero Author-X-Name-Last: Ganugi Author-Name: Giovanni Marseguerra Author-X-Name-First: Giovanni Author-X-Name-Last: Marseguerra Author-Email: giovanni.marseguerra@unicatt.it Author-Workplace-Name: Università Cattolica del Sacro Cuore Author-Workplace-Name: Dipartimento di Matematica per le Scienze economiche, finanziarie ed attuariali, Università Cattolica del Sacro Cuore Author-Name: Davide Mezzogori Author-X-Name-First: Davide Author-X-Name-Last: Mezzogori Author-Name: Francesco Zammori Author-X-Name-First: Francesco Author-X-Name-Last: Zammori Title: Machine Learning models for bankruptcy prediction in Italy:do industrial variables count? Abstract: We aim to provide a predictive model, specifically designed for the Italian economy, which classifies solvent and insolvent firms one year in advance, using AIDA Bureau van Dijk dataset from 2007 to 2015. We apply a full battery of bankruptcy forecasting models, including both traditional and more sophisticated machine learning techniques, and add to the financial ratios used in the literature a set of industrial/regional variables. We find that XGBoost is the best performer and that industrial/regional variables are important. Moreover, belonging to a district,having a high markup and a greater market share diminish bankruptcy probability. Length: 41 Creation-Date: 2019-03 File-URL: https://dipartimenti.unicatt.it/dime-dime19_03.pdf File-Format: Application/pdf File-Function: First version, 2019 Number: dime19_03 Classification-JEL: G33, C45, C52, R11, L23. Keywords: Firm distress analysis, machine learning, logistic regression, industrial variables. Handle: RePEc:ctc:sdims:dime19_03